If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90+15t=5t^2
We move all terms to the left:
90+15t-(5t^2)=0
determiningTheFunctionDomain -5t^2+15t+90=0
a = -5; b = 15; c = +90;
Δ = b2-4ac
Δ = 152-4·(-5)·90
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-45}{2*-5}=\frac{-60}{-10} =+6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+45}{2*-5}=\frac{30}{-10} =-3 $
| 4=7-3t | | -2p^2+24p-54=0 | | 15=z3+ 12 | | 13+8j=37 | | (m^2)+2m=0 | | 66=3(r-63) | | r5+14=21 | | 19-m=-7 | | 25+75x=100+50x | | r5+ 14=21 | | y−100–1=0 | | 9(d-93)=27 | | (-3-2x)^2-4x^2-3x-17=-3 | | 2(4x+2)=15 | | 9(d−93)=27 | | 3=d/5−2 | | 5z+1÷3=7 | | 7f+16=93 | | h−82/2=9 | | z/7−1=2 | | 3x+9/10x-40=0 | | 18=2p+2 | | 1/2(2-4x)=1/4x | | 19=g/3+15 | | −3n=15 | | 2x+18=53 | | 3x2−6x=29 | | –3=v−62–7 | | 2s+8=12 | | 10−2j=6 | | 35=−7a+14 | | b/3+12=16 |